Estancia Basin Watershed and Forest Health Experimental Monitoring Project

by

David Lightfoot¹, Leif Bang¹, Chris Garrett², and Victoria Williams¹

SWCA Environmental Consultants

¹ Albuquerque, NM ² Phoenix, AZ

Background

Southwest forest management over the past decade

forest thinning and restoration

New forest management practices aimed to reduce potential for catastrophic wildfire and associated negative environmental / economic impacts; thinning and prescribed burns.

National plans and initiatives:

- US National Fire Plan (2000).
- US Healthy Forests Initiative (2002).
- Western Governors 10-year Plan (2002).
- Healthy Forests and Rangelands (2007).

New Mexico specific:

New Mexico Forest and Watershed Health Plan (2004).

Background

Forest thinning and forest and watershed health

- Key goals of forest restoration:
- Sustainable landscape productivity.
- Reduced potential for catastrophic wildfire.
- Resistance and resilience to environmental disturbance (drought, insects, disease, widlfire).
- Long-term provision of wildlife habitat.
- Long-term ecosystem services to people.
- Sustainable natural hydrologic processes.
 - surface flow, infiltration, recharge.
 - water quality.

Background

Potential Environmental Impacts of Forest Thinning;

Positive or Negative from a resource management perspective

Soils

- compaction, infiltration, erosion.
- leaching of soil minerals and organic matter.

Hydrology

- surface runoff.
- ground-water recharge.
- water quality.

Vegetation

- productivity (cover), diversity (species, growth form, physical structure).
- invasive species.

Animals

• productivity (relative abundance), diversity (species & trophic structure)

Temporal stability for all of the above.

Purpose of Experimental Monitoring Project

Forest Thinning in the Estancia Basin Watershed, Manzano Mountains: forest management for watershed health.

Ponderosa pine forest and pinyon/juniper woodlands.

To determine the effects of Estancia Basin forest thinning practices on:

- hydrology,
- soils,
- vegetation,
- native animals,

over time, following forest thinning treatments.

Experimental Approach

Implement current forest thinning treatments on specific study plots. Measure responses of soils, hydrology, vegetation, and animals over time.

- assess both ponderosa pine and pinyon/juniper woodlands.
- stratify landscape by topography, soils, vegetation.
- replicate in different sub-watersheds.
- paired treatment and control study plots.
- determine pre-treatment conditions for soils, hydrology, vegetation and animals.
- impose forest thinning treatments (prescriptions for the watershed).
- monitor responses of soils, hydrology, vegetation and animals over time.

Current status at the planning stage, site installation begins in September.

Thunderbird Ponderosa

State Land Pinyon/juniper

Bouton Ponderosa

Vigil Pinyon/juniper

Estancia Basin Monitoring Study Experimental Design

Experimental Design: Study Site Selection

Criteria

Representative of on-going Estancia Basin forest thinning projects.

- Two woodland types; 1) ponderosa pine, 2)pinyon/juniper.
- Ponderosa and PJ sites within the same subwatersheds.
- Within region of current forest thinning activities.
- On private land of landowner involved with thinning program, and cooperation of landowner.
- Appropriate sized area (~10 acres).
- Homogenous landscape for paried treatment :
 - elevation, topgography, aspect, slope, soils, hydrology, vegetation (including tree species, density and structure).

Process

Assessed 30 potential sites along Manzano Mountains east slope.

- Eliminated about half based on size (too small) or isolation.
- Visited 13 sites for field evaluation.
- Selected final four from 7 with potential (chose within subwatersheds).

Landscape / forest type stratification

Figure 2.2. Example of landscape unit stratification. This type of stratification can only be done with aerial photos. Subdivision into soil-landscape units was not possible due to lack of soil survey information. The use of Soil Survey Maps can make this process easier and more accurate.

Source: USDA-ARS Monitoring Manual, 2005.

Arroyo del Cuervo subwatershed (soils / aerial overlays)

Study Subplots

Vegetation/soils subplot diagram

soils and vegetation measures

Tree density subplots (overlaid on soils and veg subplot lines)

Figure 12.1. USFS Forest Inventory and Analysis plot diagram (modified from USDA Forest Service 2003).

Source: USDA-ARS Monitoring Manual, 2005.

Study Subplots

Animal subplot diagram

- bird point counts
- rodent trapping grid

Monitoring Methods and Protocols

1. USDA-ARS rangeland monitoring protocols; soils, vegetation. Integrates various soils, hydrology and vegetation measures with monitoring.

http://usda-ars.nmsu.edu/JER/Monit_Assess/monitoring.php

2. USDA Forest Service Inventory and Analysis (version 3) protocols; tree density and canopy structure (*in above too*).

http://www.fia.fs.fed.us/library/field-guides-methods-proc/

3. Specific literature sources; hydrology, animals, and some aspects of soils.

Weather

Automated meteorological stations at each study plot; data recorded hourly on data loggers year-round.

Spectrum Technologies®

weather data recorded:

- precipitation
- soil moisture (-2 cm, -5 cm)
- ambient temperature
- soil temperature (-2 cm)

Soils

All measurements made in May of each year

Soil type and structure

soil pits (profile, texture; standard)

Soil chemistry

 soil cores and analysis (nitrogen:total N, phosphorus, carbon:organic matter; standard)

Soil surface stability

• surface stability test (crust development, resilience; USDA-ARS)

Soil water infiltration

• surface infiltration test (water infiltration rate; USDA-ARS)

Soil surface erosion

• soil erosion bridge (drop-pin measures; Carl White, UNM)

Hydrology

Thinning treatments can affect various aspects of the hydrologic response on the watershed:

- Amount of runoff
- Seasonal timing of runoff
- Rapidity of runoff (flashiness)

The surface outflow from the subwatershed associated with each subplot will be monitored using pre-fab Parshall flumes:

Water levels in the flumes will be automatically measured using a pressure transducer/datalogger:

- Measurements collected every 5 minutes
 - Datalogger maintenance every 6 months

Vegetation

All measurements made in September of each year.

1. Non-trees, and trees less than one-inch dbh:

species composition (diversity)

• modified Whittaker plots.

foliage canopy cover (productivity)

• line-intercept.

foliage canopy height (productivity)

• point-line-intercept, veg. structure.

2. Trees (greater than one-inch dbh):

species composition (diversity)

• whole subplot tree inventory, maps.

tree canopy structure (productivity)

• canopy structure measures.

tree growth (productivity)

- dbh, dendrometer bands.
- density.
- 3. Repeat photo points: (stability over time + all above)
- visual representation of overall plot vegetation over time.

Animals

Measurements made in May and September each year

Birds

- 20 minute dawn point counts centered on each animal study plot.
- species composition, relative abundance. (diversity, productivity, temporal stability)
- breeding season, fall migration.

Small Mammals

- repeat mark/release live trapping on each animal plot, 6 by 6 trap array, 36 traps/plot.
- 3 consecutive nights.
- species composition, relative abundance. (diversity, productivity, temporal stability)
- pre- and post-breeding season each year.

Large Mammals

• track and scat counts (by species) on vegetation line-intercepts. (diversity, productivity, temporal stability)

Data Management

- Weather and hydrology data will be offloaded and stored as ASCII files
- Field data from soils, vegetation, and animals will be entered as Excel files and stored as both Excel and ASCII files.
- Metadata for each data set, including data history records.
- Data error checking by summary analyses and visual inspection.
- All clean data files and metadata will be available on-line at secure ftp site.
- Data will be available on-line within one year of collection.

Data Analysis and Interpretation

- Summary graphics and charts.
- Statistical tests for comparing treatment to control plots within subwatersheds for measurement variables (paired t-tests and ANOVA; SAS software).
- Repeated measures ANOVA and/or mixed-model approaches for testing treatment differences over time and interactions (SAS software).
- Ecological community analysis approaches for comparing species composition and diversity (similarity/dissimilarity approaches; PC-ORD software).
- Correlation/regression co-variance analysis across variables (SAS software).
- Separate analyses for ponderosa and pinyon/juniper environments.

Integration of Findings and Assessment of Forest and Watershed Health

Integrated ecosystem approach – assess the entire interactive system

Ecosystem function and productivity

• comparatively assess responses of all measured variables to treatments in an integrated way (e.g., weather/soils/hydrology/plants/animals

X treatments vs. controls).

 determine if responses are positive or negative (relative to management goals).

Ecosystem resilience and stability

- comparatively assess ecosystem function.
- and productivity over time.

Source: USDA-ARS Monitoring Manual, 2005.

Air
 quality
 Recreation
 Wildlife habitat
 Minerals, oil & gas
 Livestock production
 Military testing & training
 Aesthetic, open space & wilderness values
 Invasive, threatened & endangered species

Foundation

Soil & Site Stability

Figure Intro.1. Monitoring the three key attributes (primary monitoring objective) serves as the

foundation for sustaining the potential to support

diverse management objectives.

Integration of Findings and Assessment of Forest and Watershed Health

Resistance and resilience of ponderosa pine forests and pinyon/juniper woodlands to forest thinning in the Estancia Basin.

• Soil stability, hydrologic function, biological integrity.

Figure 17.10. Resistance is the ability of a system to resist a disturbance over time. Resilience is the ability of a system to rebound after a disturbance (adapted from Seybold et al. 1999).

Source: USDA-ARS Monitoring Manual, 2005.

Acknowledgements

Special thanks to Dierdre Tarr and Stan Bulsterbaum from the Claunch-Pinto Soil and Water Conservation district for their efforts assisting us with this project.

The New Mexico State Water Board provided funding for this project.